کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1147352 957584 2006 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Strong consistency of least-squares estimation in linear regression models with vague concepts
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Strong consistency of least-squares estimation in linear regression models with vague concepts
چکیده انگلیسی

Linear regression models with vague concepts extend the classical single equation linear regression models by admitting observations in form of fuzzy subsets instead of real numbers. They have recently been introduced [cf. Krätschmer, Induktive statistik auf basis unscharfer meßkonzepte am beispiel linearer regressionsmodelle, Unpublished Habilitation Monograph, Faculty of Law and Economics of the University of Saarland, Saarbrücken, 2001] to improve the empirical meaningfulness of the relationship between the involved items by a more sensitive attention to the problems of data measurement, in particular the fundamental problem of adequacy. The parameters of such models are still real numbers, and a method of estimation can be applied which extends directly the ordinary least-squares method. This paper deals with some first asymptotic properties of estimators obtained by the method. Firstly, strong consistency will be shown, and secondly, the convergence rate will be investigated. The later result will be the starting point for a future study which will calculate the limit distributions of the estimators.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 97, Issue 3, March 2006, Pages 633-654