کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1147356 957584 2006 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Consistency of the generalized MLE of a joint distribution function with multivariate interval-censored data
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Consistency of the generalized MLE of a joint distribution function with multivariate interval-censored data
چکیده انگلیسی

Wong and Yu [Generalized MLE of a joint distribution function with multivariate interval-censored data, J. Multivariate Anal. 69 (1999) 155–166] discussed generalized maximum likelihood estimation of the joint distribution function of a multivariate random vector whose coordinates are subject to interval censoring. They established uniform consistency of the generalized MLE (GMLE) of the distribution function under the assumption that the random vector is independent of the censoring vector and that both of the vector distributions are discrete. We relax these assumptions and establish consistency results of the GMLE under a multivariate mixed case interval censorship model. van der Vaart and Wellner [Preservation theorems for Glivenko–Cantelli and uniform Glivenko–Cantelli class, in: E. Gine, D.M. Mason, J.A. Wellner (Eds.), High Dimensional Probability, vol. II, Birkhäuser, Boston, 2000, pp. 115–133] and Yu [Consistency of the generalized MLE with multivariate mixed case interval-censored data, Ph.D Dissertation, Binghamton University, 2000] independently proved strong consistency of the GMLE in the L1(μ)-topology, where μ is a measure derived from the joint distribution of the censoring variables. We establish strong consistency of the GMLE in the topologies of weak convergence and pointwise convergence, and eventually uniform convergence under appropriate distributional assumptions and regularity conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 97, Issue 3, March 2006, Pages 720-732