کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1147367 957589 2006 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotics for estimation and testing procedures under loss of identifiability
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Asymptotics for estimation and testing procedures under loss of identifiability
چکیده انگلیسی

Statistical analyses commonly make use of models that suffer from loss of identifiability. In this paper, we address important issues related to the parameter estimation and hypothesis testing in models with loss of identifiability. That is, there are multiple parameter points corresponding to the same true model. We refer the set of these parameter points to as the set of true parameter values. We consider the case where the set of true parameter values is allowed to be very large or even infinite, some parameter values may lie on the boundary of the parameter space, and the data are not necessarily independently and identically distributed. Our results are applicable to a large class of estimators and their related testing statistics derived from optimizing an objective function such as a likelihood. We examine three specific examples: (i) a finite mixture logistic regression model; (ii) stationary ARMA processes; (iii) general quadratic approximation using Hellinger distance. The applications to these examples demonstrate the applicability of our results in a broad range of difficult statistical problems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 97, Issue 1, January 2006, Pages 19-45