کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1147373 957589 2006 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian inference in spherical linear models: robustness and conjugate analysis
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Bayesian inference in spherical linear models: robustness and conjugate analysis
چکیده انگلیسی

The early work of Zellner on the multivariate Student-t linear model has been extended to Bayesian inference for linear models with dependent non-normal error terms, particularly through various papers by Osiewalski, Steel and coworkers. This article provides a full Bayesian analysis for a spherical linear model. The density generator of the spherical distribution is here allowed to depend both on the precision parameter φ and on the regression coefficients β. Another distinctive aspect of this paper is that proper priors for the precision parameter are discussed.The normal-chi-squared family of prior distributions is extended to a new class, which allows the posterior analysis to be carried out analytically. On the other hand, a direct joint modelling of the data vector and of the parameters leads to conjugate distributions for the regression and the precision parameters, both individually and jointly. It is shown that some model specifications lead to Bayes estimators that do not depend on the choice of the density generator, in agreement with previous results obtained in the literature under different assumptions. Finally, the distribution theory developed to tackle the main problem is useful on its own right.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 97, Issue 1, January 2006, Pages 179-197