کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1147402 1489751 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A note on the construction of blocked two-level designs with general minimum lower order confounding
ترجمه فارسی عنوان
یک یادداشت در ساخت طرح های مسدود شده دو سطح با حداقل به طور کلی حداقل دستور مخالف
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی


• This paper gives the construction method of B-GMC 2n−m:2r2n−m:2r designs with 5N/16+1≤n≤N/25N/16+1≤n≤N/2, where N=2n−mN=2n−m.
• We show that each B-GMC blocked design has a common specific structure.
• Examples are included to illustrate the developed theory.

Blocked designs are useful in experiments. The general minimum lower order confounding (GMC) is an elaborate criterion which was proposed for selecting optimal fractional factorial designs. Zhang and Mukerjee (2009b) extended the GMC criterion to the B-GMC criterion for selecting a 2n−m:2r2n−m:2r design, where 2n−m:2r2n−m:2r denotes a two-level regular blocked design with N=2n−mN=2n−m runs, nn treatment factors and 2r2r blocks. This paper gives the first construction method of B-GMC 2n−m:2r2n−m:2r designs with 5N/16+1≤n≤N/25N/16+1≤n≤N/2. The results indicate that under isomorphism, with suitable choice of the blocking factors, each B-GMC blocked design has a common specific structure. Examples are included to illustrate the developed theory.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 172, May 2016, Pages 16–22
نویسندگان
, , ,