کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1147489 | 957758 | 2013 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Construction of blocked two-level regular designs with general minimum lower order confounding
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Zhang et al. (2008) proposed a general minimum lower order confounding (GMC for short) criterion, which aims to select optimal factorial designs in a more elaborate and explicit manner. By extending the GMC criterion to the case of blocked designs, Wei et al. (submitted for publication) proposed a B1-GMC criterion. The present paper gives a construction theory and obtains the B1-GMC 2nâm:2r designs with nâ¥5N/16+1, where 2nâm:2r denotes a two-level regular blocked design with N=2nâm runs, n treatment factors, and 2r blocks. The construction result is simple. Up to isomorphism, the B1-GMC 2nâm:2r designs can be constructed as follows: the n treatment factors and the 2râ1 block effects are, respectively, assigned to the last n columns and specific 2râ1 columns of the saturated 2(Nâ1)â(Nâ1ân+m) design with Yates order. With such a simple structure, the B1-GMC designs can be conveniently used in practice. Examples are included to illustrate the theory.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 143, Issue 6, June 2013, Pages 1082-1090
Journal: Journal of Statistical Planning and Inference - Volume 143, Issue 6, June 2013, Pages 1082-1090
نویسندگان
Shengli Zhao, Pengfei Li, Runchu Zhang, Rohana Karunamuni,