| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 1147498 | 957766 | 2012 | 17 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												On the regularized Laplacian eigenmaps 
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													ریاضیات کاربردی
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												To find an appropriate low-dimensional representation for complex data is one of the central problems in machine learning and data analysis. In this paper, a nonlinear dimensionality reduction algorithm called regularized Laplacian eigenmaps (RLEM) is proposed, motivated by the method for regularized spectral clustering. This algorithm provides a natural out-of-sample extension for dealing with points not in the original data set. The consistency of the RLEM algorithm is investigated. Moreover, a convergence rate is established depending on the approximation property and the capacity of the reproducing kernel Hilbert space measured by covering numbers. Experiments are given to illustrate our algorithm.
ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 142, Issue 7, July 2012, Pages 1627–1643
											Journal: Journal of Statistical Planning and Inference - Volume 142, Issue 7, July 2012, Pages 1627–1643
نویسندگان
												Ying Cao, Di-Rong Chen,