کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1147700 957787 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quantile inference for heteroscedastic regression models
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Quantile inference for heteroscedastic regression models
چکیده انگلیسی

Consider the nonparametric heteroscedastic regression model Y=m(X)+σ(X)ɛY=m(X)+σ(X)ɛ, where m(·)m(·) is an unknown conditional mean function and σ(·)σ(·) is an unknown conditional scale function. In this paper, the limit distribution of the quantile estimate for the scale function σ(X)σ(X) is derived. Since the limit distribution depends on the unknown density of the errors, an empirical likelihood ratio statistic based on quantile estimator is proposed. This statistics is used to construct confidence intervals for the variance function. Under certain regularity conditions, it is shown that the quantile estimate of the scale function converges to a Brownian motion and the empirical likelihood ratio statistic converges to a chi-squared random variable. Simulation results demonstrate the superiority of the proposed method over the least squares procedure when the underlying errors have heavy tails.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 141, Issue 6, June 2011, Pages 2079–2090
نویسندگان
, ,