کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1147767 | 957793 | 2011 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Pearson residual and efficiency of parameter estimates in generalized linear model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We demonstrate that the efficiency of regression parameter estimates in the generalized linear model can be expressed as a function of Pearson residuals and likelihood based information. The relationship provides an easy way to derive sandwich variance estimators on β^ for a specific distribution within the exponential family. In generalized linear models, the correlation between Pearson residual and Fisher information can be used to predict the error ratio of quasi-likelihood variance versus sandwich variance when the sample size is sufficiently large. The derived theory can help to determine which conventional approach to use in the generalized linear model for certain types of data analysis, such as analyzing heteroscedastic data in linear regression; or to analyze over-dispersed data for single parameter families of distributions. The results from re-analysis of a clinical trial data set are used to illustrate issues explored in the paper.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 141, Issue 2, February 2011, Pages 1014-1020
Journal: Journal of Statistical Planning and Inference - Volume 141, Issue 2, February 2011, Pages 1014-1020
نویسندگان
Jing Xu, Michael LaValley,