کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1147879 957806 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Extended BIC for linear regression models with diverging number of relevant features and high or ultra-high feature spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Extended BIC for linear regression models with diverging number of relevant features and high or ultra-high feature spaces
چکیده انگلیسی

In many conventional scientific investigations with high or ultra-high dimensional feature spaces, the relevant features, though sparse, are large in number compared with classical statistical problems, and the magnitude of their effects tapers off. It is reasonable to model the number of relevant features as a diverging sequence when sample size increases. In this paper, we investigate the properties of the extended Bayes information criterion (EBIC) (Chen and Chen, 2008) for feature selection in linear regression models with diverging number of relevant features in high or ultra-high dimensional feature spaces. The selection consistency of the EBIC in this situation is established. The application of EBIC to feature selection is considered in a SCAD cum EBIC procedure. Simulation studies are conducted to demonstrate the performance of the SCAD cum EBIC procedure in finite sample cases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 143, Issue 3, March 2013, Pages 494–504
نویسندگان
, ,