کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1148112 1489769 2014 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lasso with long memory regression errors
ترجمه فارسی عنوان
لسو با خطاهای رگرسیون حافظه طولانی
کلمات کلیدی
کمند، انعطاف پذیری، وابستگی طولانی مدت حافظه، ثبات را وارد کنید عادی همبستگی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی


• We investigate properties of Lasso in a linear model with long memory dependent errors.
• Theory in both non-asymptotic and asymptotic settings is extended to the present setup.
• Finite sample error bounds are obtained for the Lasso in the high dimensional setup.
• Sign consistency of Lasso is established in the high dimensional setup.
• Oracle property of adaptive Lasso is established in the p

Lasso is a computationally efficient approach to model selection and estimation, and its properties are well studied when the regression errors are independent and identically distributed. We study the case, where the regression errors form a long memory moving average process. We establish a finite sample oracle inequality for the Lasso solution. We then show the asymptotic sign consistency in this setup. These results are established in the high dimensional setup (p>np>n) where p can be increasing exponentially with n  . Finally, we show the consistency, n1/2−d-consistencyn1/2−d-consistency of Lasso, along with the oracle property of adaptive Lasso, in the case where p is fixed. Here d is the memory parameter of the stationary error sequence. The performance of Lasso is also analysed in the present setup with a simulation study.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 153, October 2014, Pages 11–26
نویسندگان
,