کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1148220 957825 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An identity for the Fisher information and Mahalanobis distance
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
An identity for the Fisher information and Mahalanobis distance
چکیده انگلیسی

Consider a mixture problem consisting of k classes. Suppose we observe an s-dimensional random vector X   whose distribution is specified by the relations P(X∈A|Y=i)=Pi(A)P(X∈A|Y=i)=Pi(A), where Y   is an unobserved class identifier defined on {1,…,k}{1,…,k}, having distribution P(Y=i)=piP(Y=i)=pi. Assuming the distributions PiPi having a common covariance matrix, elegant identities are presented that connect the matrix of Fisher information in Y   on the parameters p1,…,pkp1,…,pk, the matrix of linear information in X, and the Mahalanobis distances between the pairs of P  's. Since the parameters are not free, the information matrices are singular and the technique of generalized inverses is used. A matrix extension of the Mahalanobis distance and its invariant forms are introduced that are of interest in their own right. In terms of parameter estimation, the results provide an independent of the parameter upper bound for the loss of accuracy by esimating p1,…,pkp1,…,pk from a sample of X′X′s, as compared with the ideal estimator based on a random sample of Y′Y′s.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 138, Issue 12, 1 December 2008, Pages 3950–3959
نویسندگان
, ,