کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1148228 | 957825 | 2008 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Statistical analysis of non-inferiority via non-zero risk difference in stratified matched-pair studies
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A stratified study is often designed for adjusting several independent trials in modern medical research. We consider the problem of non-inferiority tests and sample size determinations for a nonzero risk difference in stratified matched-pair studies, and develop the likelihood ratio and Wald-type weighted statistics for testing a null hypothesis of non-zero risk difference for each stratum in stratified matched-pair studies on the basis of (1) the sample-based method and (2) the constrained maximum likelihood estimation (CMLE) method. Sample size formulae for the above proposed statistics are derived, and several choices of weights for Wald-type weighted statistics are considered. We evaluate the performance of the proposed tests according to type I error rates and empirical powers via simulation studies. Empirical results show that (1) the likelihood ratio and the Wald-type CMLE test based on harmonic means of the stratum-specific sample size (SSIZE) weight (the Cochran's test) behave satisfactorily in the sense that their significance levels are much closer to the prespecified nominal level; (2) the likelihood ratio test is better than Nam's [2006. Non-inferiority of new procedure to standard procedure in stratified matched-pair design. Biometrical J. 48, 966-977] score test; (3) the sample sizes obtained by using SSIZE weight are smaller than other weighted statistics in general; (4) the Cochran's test statistic is generally much better than other weighted statistics with CMLE method. A real example from a clinical laboratory study is used to illustrate the proposed methodologies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 138, Issue 12, 1 December 2008, Pages 4055-4067
Journal: Journal of Statistical Planning and Inference - Volume 138, Issue 12, 1 December 2008, Pages 4055-4067
نویسندگان
Hui-Qiong Li, Nian-Sheng Tang, Liu-Cang Wu,