کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1148447 957835 2008 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Empirical Bayes vs. fully Bayes variable selection
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Empirical Bayes vs. fully Bayes variable selection
چکیده انگلیسی

For the problem of variable selection for the normal linear model, fixed penalty selection criteria such as AIC, CpCp, BIC and RIC correspond to the posterior modes of a hierarchical Bayes model for various fixed hyperparameter settings. Adaptive selection criteria obtained by empirical Bayes estimation of the hyperparameters have been shown by George and Foster [2000. Calibration and Empirical Bayes variable selection. Biometrika 87(4), 731–747] to improve on these fixed selection criteria. In this paper, we study the potential of alternative fully Bayes methods, which instead margin out the hyperparameters with respect to prior distributions. Several structured prior formulations are considered for which fully Bayes selection and estimation methods are obtained. Analytical and simulation comparisons with empirical Bayes counterparts are studied.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 138, Issue 4, 1 April 2008, Pages 888–900
نویسندگان
, ,