کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1148595 | 957841 | 2007 | 16 صفحه PDF | دانلود رایگان |

Trimmed L-moments, defined by Elamir and Seheult [2003. Trimmed L-moments. Comput. Statist. Data Anal. 43, 299–314], summarize the shape of probability distributions or data samples in a way that remains viable for heavy-tailed distributions, even those for which the mean may not exist. We derive some further theoretical results concerning trimmed L-moments: a relation with the expansion of the quantile function as a weighted sum of Jacobi polynomials; the bounds that must be satisfied by trimmed L-moments; recurrences between trimmed L-moments with different degrees of trimming; and the asymptotic distributions of sample estimators of trimmed L-moments. We also give examples of how trimmed L-moments can be used, analogously to L-moments, in the analysis of heavy-tailed data. Examples include identification of distributions using a trimmed L-moment ratio diagram, shape parameter estimation for the generalized Pareto distribution, and fitting generalized Pareto distributions to a heavy-tailed data sample of computer network traffic.
Journal: Journal of Statistical Planning and Inference - Volume 137, Issue 9, 1 September 2007, Pages 3024–3039