کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1148820 957852 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A Bayesian nonparametric causal model
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
A Bayesian nonparametric causal model
چکیده انگلیسی

Typically, in the practice of causal inference from observational studies, a parametric model is assumed for the joint population density of potential outcomes and treatment assignments, and possibly this is accompanied by the assumption of no hidden bias. However, both assumptions are questionable for real data, the accuracy of causal inference is compromised when the data violates either assumption, and the parametric assumption precludes capturing a more general range of density shapes (e.g., heavier tail behavior and possible multi-modalities). We introduce a flexible, Bayesian nonparametric causal model to provide more accurate causal inferences. The model makes use of a stick-breaking prior, which has the flexibility to capture any multi-modalities, skewness and heavier tail behavior in this joint population density, while accounting for hidden bias. We prove the asymptotic consistency of the posterior distribution of the model, and illustrate our causal model through the analysis of small and large observational data sets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 142, Issue 4, April 2012, Pages 925–934
نویسندگان
, ,