کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1148841 957853 2006 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian wavelet analysis of autoregressive fractionally integrated moving-average processes
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Bayesian wavelet analysis of autoregressive fractionally integrated moving-average processes
چکیده انگلیسی

Long memory processes are widely used in many scientific fields, such as economics, physics and engineering. In this paper we describe a wavelet-based Bayesian estimation procedure to estimate the parameters of a general Gaussian ARFIMA (p,d,q)(p,d,q), autoregressive fractionally integrated moving average model with unknown autoregressive and moving average parameters. We employ the decorrelation properties of the wavelet transforms to write a relatively simple Bayes model in the wavelet domain. We use an efficient recursive algorithm to compute the variances of the wavelet coefficients. These depend on the unknown characteristic parameters of the model. We use Markov chain Monte Carlo methods and direct numerical integration for inference. Performances are evaluated on simulated data and on real data sets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 136, Issue 10, 1 October 2006, Pages 3415–3434
نویسندگان
, ,