کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1148959 957857 2011 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Likelihood inference for lognormal data with left truncation and right censoring with an illustration
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Likelihood inference for lognormal data with left truncation and right censoring with an illustration
چکیده انگلیسی

The lognormal distribution is quite commonly used as a lifetime distribution. Data arising from life-testing and reliability studies are often left truncated and right censored. Here, the EM algorithm is used to estimate the parameters of the lognormal model based on left truncated and right censored data. The maximization step of the algorithm is carried out by two alternative methods, with one involving approximation using Taylor series expansion (leading to approximate maximum likelihood estimate) and the other based on the EM gradient algorithm (Lange, 1995). These two methods are compared based on Monte Carlo simulations. The Fisher scoring method for obtaining the maximum likelihood estimates shows a problem of convergence under this setup, except when the truncation percentage is small. The asymptotic variance–covariance matrix of the MLEs is derived by using the missing information principle (Louis, 1982), and then the asymptotic confidence intervals for scale and shape parameters are obtained and compared with corresponding bootstrap confidence intervals. Finally, some numerical examples are given to illustrate all the methods of inference developed here.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 141, Issue 11, November 2011, Pages 3536–3553
نویسندگان
, ,