کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1148969 | 957857 | 2011 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The Ornstein–Uhlenbeck Dirichlet process and other time-varying processes for Bayesian nonparametric inference
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper introduces a new class of time-varying, measure-valued stochastic processes for Bayesian nonparametric inference. The class of priors is constructed by normalising a stochastic process derived from non-Gaussian Ornstein–Uhlenbeck processes and generalises the class of normalised random measures with independent increments from static problems. Some properties of the normalised measure are investigated. A particle filter and MCMC schemes are described for inference. The methods are applied to an example in the modelling of financial data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 141, Issue 11, November 2011, Pages 3648–3664
Journal: Journal of Statistical Planning and Inference - Volume 141, Issue 11, November 2011, Pages 3648–3664
نویسندگان
J.E. Griffin,