کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1149116 | 957862 | 2010 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An alternate version of the conceptual predictive statistic based on a symmetrized discrepancy measure
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The conceptual predictive statistic, Cp, is a widely used criterion for model selection in linear regression. Cp serves as an estimator of a discrepancy, a measure that reflects the disparity between the generating model and a fitted candidate model. This discrepancy, based on scaled squared error loss, is asymmetric: an alternate measure is obtained by reversing the roles of the two models in the definition of the measure. We propose a variant of the Cp statistic based on estimating a symmetrized version of the discrepancy targeted by Cp. We claim that the resulting criterion provides better protection against overfitting than Cp, since the symmetric discrepancy is more sensitive towards detecting overspecification than its asymmetric counterpart. We illustrate our claim by presenting simulation results. Finally, we demonstrate the practical utility of the new criterion by discussing a modeling application based on data collected in a cardiac rehabilitation program at University of Iowa Hospitals and Clinics.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 140, Issue 11, November 2010, Pages 3389-3398
Journal: Journal of Statistical Planning and Inference - Volume 140, Issue 11, November 2010, Pages 3389-3398
نویسندگان
Joseph E. Cavanaugh, Andrew A. Neath, Simon L. Davies,