کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1149187 957867 2010 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
General minimum lower order confounding designs: An overview and a construction theory
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
General minimum lower order confounding designs: An overview and a construction theory
چکیده انگلیسی
For fractional factorial (FF) designs, Zhang et al. (2008) introduced a new pattern for assessing regular designs, called aliased effect-number pattern (AENP), and based on the AENP, proposed a general minimum lower order confounding (denoted by GMC for short) criterion for selecting design. In this paper, we first have an overview of the existing optimality criteria of FF designs, and then propose a construction theory for 2n−m GMC designs with 33N/128≤n≤5N/16, where N=2n−m is the run size and n is the number of factors, for all N's and n's, via the doubling theory and SOS resolution IV designs. The doubling theory is extended with a new approach. By introducing a notion of rechanged (RC) Yates order for the regular saturated design, the construction result turns out to be quite transparent: every GMC 2n−m design simply consists of the last n columns of the saturated design with a specific RC Yates order. This can be very conveniently applied in practice.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 140, Issue 7, July 2010, Pages 1719-1730
نویسندگان
, ,