کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1149205 957867 2010 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The concept of risk unbiasedness in statistical prediction
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
The concept of risk unbiasedness in statistical prediction
چکیده انگلیسی

This paper extends the concept of risk unbiasedness for applying to statistical prediction and nonstandard inference problems, by formalizing the idea that a risk unbiased predictor should be at least as close to the “true” predictant as to any “wrong” predictant, on the average. A novel aspect of our approach is measuring closeness between a predicted value and the predictant by a regret function, derived suitably from the given loss function. The general concept is more relevant than mean unbiasedness, especially for asymmetric loss functions. For squared error loss, we present a method for deriving best (minimum risk) risk unbiased predictors when the regression function is linear in a function of the parameters. We derive a Rao–Blackwell type result for a class of loss functions that includes squared error and LINEX losses as special cases. For location-scale families, we prove that if a unique best risk unbiased predictor exists, then it is equivariant. The concepts and results are illustrated with several examples. One interesting finding is that in some problems a best unbiased predictor does not exist, but a best risk unbiased predictor can be obtained. Thus, risk unbiasedness can be a useful tool for selecting a predictor.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 140, Issue 7, July 2010, Pages 1923–1938
نویسندگان
, ,