کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1149621 957888 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Invariance of generalized wordlength patterns
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Invariance of generalized wordlength patterns
چکیده انگلیسی
The generalized wordlength pattern (GWLP) introduced by Xu and Wu [2001. Generalized minimum aberration for asymmetrical fractional factorial designs. Ann. Statist. 29, 1066-1077] for an arbitrary fractional factorial design allows one to extend the use of the minimum aberration criterion to such designs. Ai and Zhang [2004. Projection justification of generalized minimum aberration for asymmetrical fractional factorial designs. Metrika 60, 279-285] defined the J-characteristics of a design and showed that they uniquely determine the design. While both the GWLP and the J-characteristics require indexing the levels of each factor by a cyclic group, we see that the definitions carry over with appropriate changes if instead one uses an arbitrary abelian group. This means that the original definitions rest on an arbitrary choice of group structure. We show that the GWLP of a design is independent of this choice, but that the J-characteristics are not. We briefly discuss some implications of these results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 139, Issue 8, 1 August 2009, Pages 2706-2714
نویسندگان
, ,