کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1149744 957893 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dimension reduction summaries for balanced contrasts
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Dimension reduction summaries for balanced contrasts
چکیده انگلیسی
We discuss the covariate dimension reduction properties of conditional density ratios in the estimation of balanced contrasts of expectations. Conditional density ratios, as well as related sufficient summaries, can be used to replace the covariates with a smaller number of variables. For example, for comparisons among k populations the covariates can be replaced with k-1 conditional density ratios. The dimension reduction properties of conditional density ratios are directly connected with sufficiency, the dimension reduction concepts considered in regression theory, and propensity theory. The theory presented here extends the ideas in propensity theory to situations in which propensities do not exist and develops an approach to dimension reduction outside of the potential outcomes or counterfactual framework. Under general conditions, we show that a principal components transformation of the estimated conditional density ratios can be used to investigate whether a sufficient summary of dimension lower than k-1 exists and to identify such a lower dimensional summary.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 139, Issue 2, 1 February 2009, Pages 617-628
نویسندگان
, ,