کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1149794 | 957895 | 2009 | 16 صفحه PDF | دانلود رایگان |

In this article, we propose some new generalizations of M-estimation procedures for single-index regression models in presence of randomly right-censored responses. We derive consistency and asymptotic normality of our estimates. The results are proved in order to be adapted to a wide range of techniques used in a censored regression framework (e.g. synthetic data or weighted least squares). As in the uncensored case, the estimator of the single-index parameter is seen to have the same asymptotic behavior as in a fully parametric scheme. We compare these new estimators with those based on the average derivative technique of Lu and Burke [2005. Censored multiple regression by the method of average derivatives. J. Multivariate Anal. 95, 182–205] through a simulation study.
Journal: Journal of Statistical Planning and Inference - Volume 139, Issue 3, 1 March 2009, Pages 1082–1097