کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1149823 957898 2008 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Redescending M-estimators
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Redescending M-estimators
چکیده انگلیسی

In finite sample studies redescending M-estimators outperform bounded M-estimators (see for example, Andrews et al. [1972. Robust Estimates of Location. Princeton University Press, Princeton]). Even though redescenders arise naturally out of the maximum likelihood approach if one uses very heavy-tailed models, the commonly used redescenders have been derived from purely heuristic considerations. Using a recent approach proposed by Shurygin, we study the optimality of redescending M-estimators. We show that redescending M-estimator can be designed by applying a global minimax criterion to locally robust estimators, namely maximizing over a class of densities the minimum variance sensitivity over a class of estimators. As a particular result, we prove that Smith's estimator, which is a compromise between Huber's skipped mean and Tukey's biweight, provides a guaranteed level of an estimator's variance sensitivity over the class of densities with a bounded variance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 138, Issue 10, 1 October 2008, Pages 2906–2917
نویسندگان
, , ,