کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1150277 957921 2006 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On asymptotic sufficiency and optimality of quantizations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
On asymptotic sufficiency and optimality of quantizations
چکیده انگلیسی
It is known that quantizations of primary sources of information reduce the information available for statistical inference. We are interested in the quantizations for which the loss of statistical information can be controlled by the number of cells in the observation space used to quantize observations. If the losses for increasing numbers of cells converge to zero then we speak about asymptotically sufficient quantizations. Optimality is treated on the basis of rate of this convergence. The attention is restricted to the models with continuous real-valued observations and to the interval partitions. We give easily verifiable necessary and sufficient conditions for the asymptotic sufficiency and, for a most common measure of statistical information, we study also the rate of convergence to the information in the original non-quantized models. Applications of the results in concrete models are illustrated by examples.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 136, Issue 12, 1 December 2006, Pages 4217-4238
نویسندگان
, ,