کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1150352 957924 2010 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic behavior of maximum likelihood estimator for time inhomogeneous diffusion processes
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Asymptotic behavior of maximum likelihood estimator for time inhomogeneous diffusion processes
چکیده انگلیسی

First we consider a process (Xt(α))t∈[0,T) given by a SDE dXt(α)=αb(t)Xt(α)dt+σ(t)dBt, t∈[0,T)t∈[0,T), with a parameter α∈Rα∈R, where T∈(0,∞]T∈(0,∞] and (Bt)t∈[0,T)(Bt)t∈[0,T) is a standard Wiener process. We study asymptotic behavior of the MLE α^t(X(α)) of αα based on the observation (Xs(α))s∈[0,t] as t↑Tt↑T. We formulate sufficient conditions under which IX(α)(t)(α^t(X(α))−α) converges to the distribution of c∫01WsdWs/∫01(Ws)2ds, where IX(α)(t)IX(α)(t) denotes the Fisher information for αα contained in the sample (Xs(α))s∈[0,t], (Ws)s∈[0,1](Ws)s∈[0,1] is a standard Wiener process, and c=1/2 or c=−1/2. We also weaken the sufficient conditions due to Luschgy (1992, Section 4.2) under which IX(α)(t)(α^t(X(α))−α) converges to the Cauchy distribution. Furthermore, we give sufficient conditions so that the MLE of αα is asymptotically normal with some appropriate random normalizing factor.Next we study a SDE dYt(α)=αb(t)a(Yt(α))dt+σ(t)dBt, t∈[0,T)t∈[0,T), with a perturbed drift satisfying a(x)=x+O(1+|x|γ)a(x)=x+O(1+|x|γ) with some γ∈[0,1)γ∈[0,1). We give again sufficient conditions under which IY(α)(t)(α^t(Y(α))−α) converges to the distribution of c∫01WsdWs/∫01(Ws)2ds.We emphasize that our results are valid in both cases T∈(0,∞)T∈(0,∞) and T=∞T=∞, and we develop a unified approach to handle these cases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 140, Issue 6, June 2010, Pages 1576–1593
نویسندگان
, ,