کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1150520 957951 2008 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multivariate spatial U-quantiles: A Bahadur–Kiefer representation, a Theil–Sen estimator for multiple regression, and a robust dispersion estimator
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Multivariate spatial U-quantiles: A Bahadur–Kiefer representation, a Theil–Sen estimator for multiple regression, and a robust dispersion estimator
چکیده انگلیسی

A leading multivariate extension of the univariate quantiles is the so-called “spatial” or “geometric” notion, for which sample versions are highly robust and conveniently satisfy a Bahadur–Kiefer representation. Another extension of univariate quantiles has been to univariate U-quantiles, on the basis of which, for example, the well-known Hodges–Lehmann location estimator has a natural formulation. Generalizing both extensions, we introduce multivariate spatial U-quantiles and develop a corresponding Bahadur–Kiefer representation. New statistics based on spatial U-quantiles are presented for nonparametric estimation of multiple regression coefficients, extending the classical Theil–Sen nonparametric simple linear regression slope estimator, and for robust estimation of multivariate dispersion. Some other applications are mentioned as well.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 138, Issue 6, 1 July 2008, Pages 1660–1678
نویسندگان
, ,