کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1151091 958187 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
New methods for fitting multiple sinusoids from irregularly sampled data
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
New methods for fitting multiple sinusoids from irregularly sampled data
چکیده انگلیسی
A novel framework is proposed for the estimation of multiple sinusoids from irregularly sampled time series. This spectral analysis problem is addressed as an under-determined inverse problem, where the spectrum is discretized on an arbitrarily thin frequency grid. As we focus on line spectra estimation, the solution must be sparse, i.e. the amplitude of the spectrum must be zero almost everywhere. Such prior information is taken into account within the Bayesian framework. Two models are used to account for the prior sparseness of the solution, namely a Laplace prior and a Bernoulli-Gaussian prior, associated to optimization and stochastic sampling algorithms, respectively. Such approaches are efficient alternatives to usual sequential prewhitening methods, especially in case of strong sampling aliases perturbating the Fourier spectrum. Both methods should be intensively tested on real data sets by physicists.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistical Methodology - Volume 5, Issue 4, July 2008, Pages 318-327
نویسندگان
, ,