کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1151211 958201 2006 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Context dependent models for discovery of transcription factor binding sites
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Context dependent models for discovery of transcription factor binding sites
چکیده انگلیسی

Transcription factors play a crucial role in gene regulation, and the identification of transcription factor binding sites helps gain insight into gene regulatory mechanisms. The overall goal of this work is to describe a new method of binding site detection called Motif Discovery via Context Dependent Models (MDCDM). We characterize the motif (i.e., binding sites) by a series of position-dependent first-order Markov models. This model considers both the position-specific features of the motif and the dependence between positions of the motif. In addition, a “step-up” testing procedure is used to automatically determine the best-fitting Markov model for the background (i.e., nonsite regions). We compare our approach with the existing methods using both real and simulated data sets. The results show that the detection of binding sites can be greatly improved by accounting for dependence across positions in a motif and appropriately modeling the background dependence.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistical Methodology - Volume 3, Issue 1, January 2006, Pages 55–68
نویسندگان
, , ,