کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1155467 958731 2015 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An invariance principle under the total variation distance
ترجمه فارسی عنوان
یک اصل غیراخلاقی در طول فاصله متغیر
کلمات کلیدی
همگرایی در قانون، همگرایی در تنوع کل، تداوم مطلق، اصل انعطاف پذیری
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
چکیده انگلیسی

Let X1,X2,…X1,X2,… be a sequence of i.i.d. random variables, with mean zero and variance one and let Sn=(X1+⋯+Xn)/n. An old and celebrated result of Prohorov (1952) asserts that SnSn converges in total variation to the standard Gaussian distribution if and only if Sn0Sn0 has an absolutely continuous component for some integer n0≥1. In the present paper, we give yet another proof of Prohorov’s Theorem, but, most importantly, we extend it to a more general situation. Indeed, instead of merely SnSn, we consider a sequence of homogeneous polynomials in the XiXi. More precisely, we exhibit conditions under which some nonlinear invariance principle, discovered by Rotar (1979) and revisited by Mossel et al. (2010), holds in the total variation topology. There are many works about CLT under various metrics in the literature, but the present one seems to be the first attempt to deal with homogeneous polynomials in the XiXi with degree strictly greater than one.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Stochastic Processes and their Applications - Volume 125, Issue 6, June 2015, Pages 2190–2205
نویسندگان
, ,