کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1155510 | 958735 | 2015 | 47 صفحه PDF | دانلود رایگان |
Motivated by its relevance for the study of perturbations of one-dimensional voter models, including stochastic Potts models at low temperature, we consider diffusively rescaled coalescing random walks with branching and killing. Our main result is convergence to a new continuum process, in which the random space–time paths of the Sun–Swart Brownian net are terminated at a Poisson cloud of killing points. We also prove existence of a percolation transition as the killing rate varies. Key issues for convergence are the relations of the discrete model killing points and their intensity measure to the continuum counterparts: these convergence issues make the addition of killing considerably more difficult for the Brownian net than for the Brownian web.
Journal: Stochastic Processes and their Applications - Volume 125, Issue 3, March 2015, Pages 1148–1194