کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1155699 958759 2013 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Existence and convergence results for infinite dimensional nonlinear stochastic equations with multiplicative noise
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Existence and convergence results for infinite dimensional nonlinear stochastic equations with multiplicative noise
چکیده انگلیسی

The solution XnXn to a nonlinear stochastic differential equation of the form dXn(t)+An(t)Xn(t)dt−12∑j=1N(Bjn(t))2Xn(t)dt=∑j=1NBjn(t)Xn(t)dβjn(t)+fn(t)dt, Xn(0)=xXn(0)=x, where βjn is a regular approximation of a Brownian motion βjβj, Bjn(t) is a family of linear continuous operators from VV to HH strongly convergent to Bj(t)Bj(t), An(t)→A(t)An(t)→A(t), {An(t)}{An(t)} is a family of maximal monotone nonlinear operators of subgradient type from VV to V′V′, is convergent to the solution to the stochastic differential equation dX(t)+A(t)X(t)dt−12∑j=1NBj2(t)X(t)dt=∑j=1NBj(t)X(t)dβj(t)+f(t)dt, X(0)=xX(0)=x. Here V⊂H≅H′⊂V′V⊂H≅H′⊂V′ where VV is a reflexive Banach space with dual V′V′ and HH is a Hilbert space. These results can be reformulated in terms of Stratonovich stochastic equation dY(t)+A(t)Y(t)dt=∑j=1NBj(t)Y(t)∘dβj(t)+f(t)dt.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Stochastic Processes and their Applications - Volume 123, Issue 3, March 2013, Pages 934–951
نویسندگان
, , , ,