کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1156176 958807 2009 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nonparametric estimation for pure jump Lévy processes based on high frequency data
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Nonparametric estimation for pure jump Lévy processes based on high frequency data
چکیده انگلیسی

In this paper, we study nonparametric estimation of the Lévy density for pure jump Lévy processes. We consider nn discrete time observations with step ΔΔ. The asymptotic framework is: nn tends to infinity, Δ=ΔnΔ=Δn tends to zero while nΔnnΔn tends to infinity. First, we use a Fourier approach (“frequency domain”): this allows us to construct an adaptive nonparametric estimator and to provide a bound for the global L2L2-risk. Second, we use a direct approach (“time domain”) which allows us to construct an estimator on a given compact interval. We provide a bound for L2L2-risk restricted to the compact interval. We discuss rates of convergence and give examples and simulation results for processes fitting in our framework.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Stochastic Processes and their Applications - Volume 119, Issue 12, December 2009, Pages 4088–4123
نویسندگان
, ,