کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1156481 | 958833 | 2014 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Elements related to the largest complete excursion of a reflected BM stopped at a fixed time. Application to local score
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We calculate the density function of (Uâ(t),θâ(t)), where Uâ(t) is the maximum over [0,g(t)] of a reflected Brownian motion U, where g(t) stands for the last zero of U before t, θâ(t)=fâ(t)âgâ(t), fâ(t) is the hitting time of the level Uâ(t), and gâ(t) is the left-hand point of the interval straddling fâ(t). We also calculate explicitly the marginal density functions of Uâ(t) and θâ(t). Let Unâ and θnâ be the analogs of Uâ(t) and θâ(t) respectively where the underlying process (Un) is the Lindley process, i.e. the difference between a centered real random walk and its minimum. We prove that (Unân,θnân) converges weakly to (Uâ(1),θâ(1)) as nââ.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Stochastic Processes and their Applications - Volume 124, Issue 12, December 2014, Pages 4202-4223
Journal: Stochastic Processes and their Applications - Volume 124, Issue 12, December 2014, Pages 4202-4223
نویسندگان
Claudie Chabriac, Agnès Lagnoux, Sabine Mercier, Pierre Vallois,