کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1156525 | 958837 | 2006 | 24 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Large deviations for the two-dimensional Navier–Stokes equations with multiplicative noise
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A Wentzell–Freidlin type large deviation principle is established for the two-dimensional Navier–Stokes equations perturbed by a multiplicative noise in both bounded and unbounded domains. The large deviation principle is equivalent to the Laplace principle in our function space setting. Hence, the weak convergence approach is employed to obtain the Laplace principle for solutions of stochastic Navier–Stokes equations. The existence and uniqueness of a strong solution to (a) stochastic Navier–Stokes equations with a small multiplicative noise, and (b) Navier–Stokes equations with an additional Lipschitz continuous drift term are proved for unbounded domains which may be of independent interest.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Stochastic Processes and their Applications - Volume 116, Issue 11, November 2006, Pages 1636–1659
Journal: Stochastic Processes and their Applications - Volume 116, Issue 11, November 2006, Pages 1636–1659
نویسندگان
S.S. Sritharan, P. Sundar,