کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1156586 958846 2007 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Large deviations for weighted empirical mean with outliers
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Large deviations for weighted empirical mean with outliers
چکیده انگلیسی

We study in this article the large deviations for the weighted empirical mean Ln=1n∑1nf(xin)⋅Zi, where (Zi)i∈N(Zi)i∈N is a sequence of RdRd-valued independent and identically distributed random variables with some exponential moments and where the deterministic weights f(xin) are m×dm×d matrices. Here f is a continuous application defined on a locally compact metric space (X,ρ)(X,ρ) and we assume that the empirical measure 1n∑i=1nδxin weakly converges to some probability distribution RR with compact support YY.The scope of this paper is to study the effect on the Large Deviation Principle (LDP) of outliers  , that is elements xi(n)n∈{xin,1≤i≤n} such that lim infn→∞ρ(xi(n)n,Y)>0. We show that outliers can have a dramatic impact on the rate function driving the LDP for LnLn. We also show that the statement of a LDP in this case requires specific assumptions related to the large deviations of the single random variable Z1n. This is the main input with respect to a previous work by Najim [J. Najim, A Cramér type theorem for weighted random variables, Electron. J. Probab. 7 (4) (2002) 32 (electronic)].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Stochastic Processes and their Applications - Volume 117, Issue 10, October 2007, Pages 1373–1403
نویسندگان
, , ,