کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1156704 958857 2012 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Implicit renewal theorem for trees with general weights
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Implicit renewal theorem for trees with general weights
چکیده انگلیسی

Consider distributional fixed point equations of the form R=Df(Q,Ci,Ri,1≤i≤N), where f(⋅)f(⋅) is a possibly random real-valued function, N∈{0,1,2,3,…}∪{∞}N∈{0,1,2,3,…}∪{∞}, {Ci}i∈N{Ci}i∈N are real-valued random weights and {Ri}i∈N{Ri}i∈N are iid copies of RR, independent of (Q,N,C1,C2,…)(Q,N,C1,C2,…); =D represents equality in distribution. Fixed point equations of this type are important for solving many applied probability problems, ranging from the average case analysis of algorithms to statistical physics. We develop an Implicit Renewal Theorem that enables the characterization of the power tail behavior of the solutions RR to many equations of multiplicative nature that fall into this category. This result extends the prior work in Jelenković and Olvera-Cravioto (2012) [16], which assumed nonnegative weights {Ci}{Ci}, to general real-valued weights. We illustrate the developed theorem by deriving the power tail asymptotics of the solution RR to the linear equation R=D∑i=1NCiRi+Q.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Stochastic Processes and their Applications - Volume 122, Issue 9, September 2012, Pages 3209–3238
نویسندگان
, ,