کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1156746 958865 2010 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Functional limit theorems for renewal shot noise processes with increasing response functions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Functional limit theorems for renewal shot noise processes with increasing response functions
چکیده انگلیسی

We consider renewal shot noise processes with response functions which are eventually nondecreasing and regularly varying at infinity. We prove weak convergence of renewal shot noise processes, properly normalized and centered, in the space D[0,∞)D[0,∞) under the J1J1 or M1M1 topology. The limiting processes are either spectrally nonpositive stable Lévy processes, including the Brownian motion, or inverse stable subordinators (when the response function is slowly varying), or fractionally integrated stable processes or fractionally integrated inverse stable subordinators (when the index of regular variation is positive). The proof exploits fine properties of renewal processes, distributional properties of stable Lévy processes and the continuous mapping theorem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Stochastic Processes and their Applications - Volume 123, Issue 6, June 2013, Pages 1987–2010
نویسندگان
,