کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1160566 | 1490349 | 2011 | 10 صفحه PDF | دانلود رایگان |

Mathematical instrumentalism construes some parts of mathematics, typically the abstract ones, as an instrument for establishing statements in other parts of mathematics, typically the elementary ones. Gödel’s second incompleteness theorem seems to show that one cannot prove the consistency of all of mathematics from within elementary mathematics. It is therefore generally thought to defeat instrumentalisms that insist on a proof of the consistency of abstract mathematics from within the elementary portion. This article argues that though some versions of mathematical instrumentalism are defeated by Gödel’s theorem, not all are. By considering inductive reasons in mathematics, we show that some mathematical instrumentalisms survive the theorem.
Journal: Studies in History and Philosophy of Science Part A - Volume 42, Issue 1, March 2011, Pages 140–149