کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
12202 784 2006 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Visualisation of bacterial sequestration and bactericidal activity within hydrating Hydrofiber® wound dressings
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Visualisation of bacterial sequestration and bactericidal activity within hydrating Hydrofiber® wound dressings
چکیده انگلیسی

The fluid handling and microbiological properties of a non-antimicrobial Hydrofiber® (NAH) wound dressing have been compared with those of a silver salt-containing Hydrofiber® (SCH). Fluorescent dyes (BacLight™, Live/Dead™ Kit) were added to fresh cultures of two wound pathogens (Pseudomonas aeruginosa and Staphylococcus aureus), and used to visualise their viability. Live bacteria stained green and dead/dying bacteria turned red. When inoculated into samples of the NAH and SCH dressings, the viability of the bacteria could be effectively monitored over time using a rapid form of confocal laser scanning microscopy (RCLSM—Leica® UK). When the NAH dressing was hydrated with stained bacterial culture, its fibres swelled quickly, reducing interstitial spaces between the fibres, resulting in the formation of a cohesive gel. Bacteria became immobilised in the gel, forming characteristic clumps, but remained largely green (viable) for more than 20 h with no apparent increase in numbers. The SCH initially behaved in a similar manner, however, using 3-D data from RCLSM time-lapse sequences P. aeruginosa was observed to turn progressively red (i.e. died) within 1.5–3 h and S. aureus similarly turned red within 5–7 h of contact with the SCH dressing. The ability of both Hydrofiber® dressings to sequester and immobilise potentially pathogenic wound micro-organisms has been demonstrated. Additionally the SCH dressing was shown to kill immobilised bacteria, as a consequence of the ionic silver bactericide. These properties of the Hydrofiber® dressings may contribute to providing an environment that is supportive to wound healing.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 27, Issue 7, March 2006, Pages 1129–1139
نویسندگان
, , , ,