کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1227826 968436 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Solid sampling coupled to flame furnace atomic absorption spectrometry for Mn and Ni determination in petroleum coke
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Solid sampling coupled to flame furnace atomic absorption spectrometry for Mn and Ni determination in petroleum coke
چکیده انگلیسی

A solid sampling flame furnace atomic absorption spectrometry (SS-FF-AAS) system was developed for Mn and Ni determination in petroleum coke. The proposed system for solid sampling was a quartz cell with two perpendicular tubes (T-shaped tubes), positioned above the burner. Manganese and Ni determination was made using an atomic absorption spectrometer with deuterium background corrector, air–acetylene flame and a single slit burner. Powdered samples of coke were introduced as pellets (up to 62 mg) into the quartz cell with a movable hollow quartz piston. When the sample pellet reached the end of quartz cell (T-connection), in the presence of a constant oxygen flow, it quickly burned and the combustion products were transferred to the upper slit tube where the atomic absorption process occurs. Calibration was possible using aqueous reference solutions applied directly on high purity graphite pellets. Results obtained for Mn and Ni using the proposed SS-FF-AAS system were compared to those obtained by inductively coupled plasma optical emission spectrometry (ICP OES) and inductively coupled plasma mass spectrometry (ICP-MS) after sample decomposition by high pressure microwave assisted acid digestion and also by microwave induced combustion. Agreement better than 96% was obtained for both methods employing a previous step of sample digestion (ICP OES and ICP-MS) and by SS-FF-AAS. Accuracy was evaluated using certified reference materials and also recovery tests. The relative standard deviation was lower than 9% for both analytes. The characteristic mass was 18.3 and 14.7 ng and the limit of detection was 0.6 and 0.8 µg g− 1 for Mn and Ni, respectively. The proposed SS-FF-AAS system can be applied for Mn and Ni determination in petroleum coke, combining a relatively high sample throughput (9 determinations per h), and a suitable precision and accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microchemical Journal - Volume 96, Issue 1, September 2010, Pages 64–70
نویسندگان
, , , , ,