کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1268159 | 972396 | 2009 | 7 صفحه PDF | دانلود رایگان |

The effect of the molecular weight of poly[9,9-didecanefluorene-alt-(bis-thienylene) benzothiadiazole] (PF10TBT) on the photovoltaic performance of fullerene-based bulk heterojunction solar cells is investigated. An increase in molecular weight of two orders of magnitude results in a 30% increase of the short-circuit current and a rise of the fill factor from 0.45 to 0.63. Electron and hole transport are found to be virtually unaffected by changing molecular weight, which means that space-charge effects do not play a role in low molecular weight devices. Using optical modeling and numerical device simulations, we demonstrate that at low molecular weight the efficiency is mainly limited by a short lifetime of bound electron–hole pairs. This short lifetime prohibits efficient dissociation and is attributed to a deficiency in phase separation for low molecular weights.
Journal: Organic Electronics - Volume 10, Issue 7, November 2009, Pages 1275–1281