کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1269077 | 972440 | 2013 | 9 صفحه PDF | دانلود رایگان |

Ultrasound-targeted microbubble destruction (UTMD) technique can be potentially used for non-viral delivery of gene therapy. Targeting wild-type p53 (wtp53) tumor suppressor gene may provide a clinically promising treatment for patients with ovarian cancer. However, UTMD mediated gene therapy typically uses non-targeted microbubbles with suboptimal gene transfection efficiency. We synthesized a targeted microbubble agent for UTMD mediated wtp53 gene therapy in ovarian cancer cells. Lipid microbubbles were conjugated with a Luteinizing Hormone–Releasing Hormone analog (LHRHa) via an avidin–biotin linkage to target the ovarian cancer A2780/DDP cells that express LHRH receptors. The microbubbles were mixed with the pEGFP-N1-wtp53 plasmid. Upon exposure to 1 MHz pulsed ultrasound beam (0.5 W/cm2) for 30 s, the wtp53 gene was transfected to the ovarian cancer cells. The transfection efficiency was (43.90 ± 6.19)%. The expression of wtp53 mRNA after transfection was (97.08 ± 12.18)%. The cell apoptosis rate after gene therapy was (39.67 ± 5.95)%. In comparison with the other treatment groups, ultrasound mediation of targeted microbubbles yielded higher transfection efficiency and higher cell apoptosis rate (p < 0.05). Our experiment verifies the hypothesis that ultrasound mediation of targeted microbubbles will enhance the gene transfection efficiency in ovarian cancer cells.
Journal: Ultrasonics Sonochemistry - Volume 20, Issue 1, January 2013, Pages 171–179