کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
12748 814 2005 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Keratinocyte-fibroblast paracrine interaction: the effects of substrate and culture condition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Keratinocyte-fibroblast paracrine interaction: the effects of substrate and culture condition
چکیده انگلیسی

Interactions between epidermal–dermal cells via soluble factors provide important signals in regulating the reepithelialization of wounded skin. For example, keratinocytes regulate the expression of keratinocyte growth factor (KGF) in fibroblasts through the release of interleukin-1beta (IL-1β). In this study, a previously developed polyethyleneglycol-based interpenetrating network (IPN) system was utilized as a platform for the delivery of keratinocyte-active factors. The effect of substrate chemistry, culture condition, and the delivery of exogenous keratinocyte-active factors on the keratinocyte behavior and the keratinocyte-fibroblast paracrine relationship was delineated. Adherent keratinocyte density on TCPS and glutaraldehyde-fixed gelatin hydrogels but not on IPN was significantly increased with culture time in the presence of growth supplements independent of the released KGF from the gelatin hydrogel and IPN. In the presence of fibroblasts, adherent keratinocyte density on gelatin hydrogels was higher than that without fibroblasts. This phenomenon was not observed on IPN and polycarbonate membrane. In summary, the delivered exogenous huKGF (i.e., released from a biomaterial matrix) operates in tandem with fibroblasts in regulating keratinocyte activation (i.e., IL-lβ release and adhesion) in a surface-dependent manner. Immunoassay analysis of cell culture keratinocyte-fibroblast paracrine relationship as characterized by IL-1β and KGF could not be established in the presence of IPNs, 0.1% glutaraldehyde-fixed gelatin hydrogels, and polycarbonate membranes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 26, Issue 17, June 2005, Pages 3673–3682
نویسندگان
, ,