کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
13431108 1842477 2020 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Semantic-aware data quality assessment for image big data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Semantic-aware data quality assessment for image big data
چکیده انگلیسی
To overcome these challenges, we propose a semantic-aware data quality assessment (SDQA) architecture which includes off-line analysis and on-line assessment. In off-line analysis, for an image data source, we first transform all images into hash codes using our improved Deep Self-taught Hashing (IDSTH) algorithm which can extract semantic features with generalization ability, then construct a graph using hash codes and restricted Hamming distance, next use our designed Semantic Hash Ranking (SHR) algorithm to calculate the importance score (rank) for each node (image), which takes both the quantity of relevant images and the degree of semantic similarity into consideration, and finally rank all images in descending order of score. During on-line assessment, we first convert the user's query into hash codes using IDSTH model, then retrieve matched images to collate their importance scores, and finally help the user determine whether the image data source is fit for his requirement. The results on public dataset and real-world dataset show effectiveness, superiority and on-line efficiency of our SDQA architecture.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Future Generation Computer Systems - Volume 102, January 2020, Pages 53-65
نویسندگان
, , , , ,