| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 13431503 | 1842536 | 2020 | 30 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Algorithmic aspects of upper paired-domination in graphs
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													نظریه محاسباتی و ریاضیات
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												A set D of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to a vertex in D and the subgraph induced by D contains a perfect matching (not necessarily as an induced subgraph). A paired-dominating set of G is minimal if no proper subset of it is a paired-dominating set of G. The upper paired-domination number of G, denoted by Îpr(G), is the maximum cardinality of a minimal paired-dominating set of G. In Upper-PDS, it is required to compute a minimal paired-dominating set with cardinality Îpr(G) for a given graph G. In this paper, we show that Upper-PDS cannot be approximated within a factor of n1âε for any ε>0, unless P=NP and Upper-PDS is APX-complete for bipartite graphs of maximum degree 4. On the positive side, we show that Upper-PDS can be approximated within O(Î)-factor for graphs with maximum degree Î. We also show that Upper-PDS is solvable in polynomial time for threshold graphs, chain graphs, and proper interval graphs.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 804, 12 January 2020, Pages 98-114
											Journal: Theoretical Computer Science - Volume 804, 12 January 2020, Pages 98-114
نویسندگان
												Michael A. Henning, D. Pradhan,