کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
13436679 | 1843062 | 2019 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Iterative fusion convolutional neural networks for classification of optical coherence tomography images
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Optical coherence tomography (OCT) can achieve the high-resolution 3D tomography imaging of the retina, which is crucial for the diagnosis of retinal diseases. Currently, the classification of retinal OCT images is mainly conducted by ophthalmologists, which is time consuming and subjective. In this paper, we propose an iterative fusion convolutional neural network (IFCNN) method for the automatic classification of retinal OCT image. In the convolutional neural network (CNN), different convolutional layers contain feature information from different scales. Therefore, the proposed network adopts an iterative fusion strategy, which iteratively combines features in current convolutional layer with those of all previous layers in the CNN network, and thus can jointly utilize the features of different convolutional layers to achieve accurate classification of OCT images. Experimental results on a real retinal OCT dataset and a musculoskeletal radiographs dataset demonstrate the superiority of the proposed method over the traditional CNN and several well-known OCT classification methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Communication and Image Representation - Volume 59, February 2019, Pages 327-333
Journal: Journal of Visual Communication and Image Representation - Volume 59, February 2019, Pages 327-333
نویسندگان
Leyuan Fang, Yuxuan Jin, Laifeng Huang, Siyu Guo, Guangzhe Zhao, Xiangdong Chen,