کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
13463153 | 1845505 | 2020 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multi-class twitter data categorization and geocoding with a novel computing framework
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم انسانی و اجتماعی
مدیریت، کسب و کار و حسابداری
گردشگری، اوقات فراغت و مدیریت هتلداری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This study details the progress in transportation data analysis with a novel computing framework in keeping with the continuous evolution of the computing technology. The computing framework combines the Labeled Latent Dirichlet Allocation (L-LDA)-incorporated Support Vector Machine (SVM) classifier with the supporting computing strategy on publicly available Twitter data in determining transportation-related events to provide reliable information to travelers. The analytical approach includes analyzing tweets using text classification and geocoding locations based on string similarity. A case study conducted for the New York City and its surrounding areas demonstrates the feasibility of the analytical approach. Approximately 700,010 tweets are analyzed to extract relevant transportation-related information for one week. The SVM classifier achieves >85% accuracy in identifying transportation-related tweets from structured data. To further categorize the transportation-related tweets into sub-classes: incident, congestion, construction, special events, and other events, three supervised classifiers are used: L-LDA, SVM, and L-LDA incorporated SVM. Findings from this study demonstrate that the analytical framework, which uses the L-LDA incorporated SVM, can classify roadway transportation-related data from Twitter with over 98.3% accuracy, which is significantly higher than the accuracies achieved by standalone L-LDA and SVM.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Cities - Volume 96, January 2020, 102410
Journal: Cities - Volume 96, January 2020, 102410
نویسندگان
Sakib Mahmud Khan, Mashrur Chowdhury, Linh B. Ngo, Amy Apon,